Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Hemamala Karunadasa,* Christina Leggett and Shaun Wong

College of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA

Correspondence e-mail:
hemamala@berkeley.edu

## Key indicators

Single-crystal X-ray study
$T=174 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
Disorder in main residue
$R$ factor $=0.038$
$w R$ factor $=0.050$
Data-to-parameter ratio $=10.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

## 2,2'-Dibromo-3, $3^{\prime}, 4,4^{\prime}, 5,5^{\prime}, 6,6^{\prime}$ 'octamethyl-1,1'-biphenyl

The title compound, $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{Br}_{2}$, has crystallographic twofold rotation symmetry. The Br atom in the 2 position is disordered with the methyl group in the 6 position. The biphenyl bridge bond distance and the torsion angle between the rings are in good agreement with similar previously reported structures.

## Comment

The title compound, (I), crystallizes in the space group Pbcn, with the molecule on a crystallographic twofold axis, which bisects the angle between the two rings. One half of the molecule consists of a benzene ring, to which are bonded a Br atom and four methyl groups. The Br atom is bonded in the 2 position and is disordered between the 2 and 6 positions. The methyl group in the 6 position is concomitantly disordered.


The major-component $\mathrm{C} 2-\mathrm{Br} 1$ distance is 1.871 (4) $\AA$ and the minor-component $\mathrm{C} 6-\mathrm{Br} 2$ distance is 1.809 (5) $\AA$. The major-component $\mathrm{C} 2-\mathrm{Br} 1$ distance is comparable to the $\mathrm{C}-$ Br distances in $2,2^{\prime}$-dibromobiphenyl (1.895 and $1.905 \AA$; MacNeil \& Decken, 1999).

The C-C distance of the biphenyl bridge is 1.502 (9) $\AA$, similar to that of $2,2^{\prime}$-dibromobiphenyl (1.499 $\AA$ ), decachlorobiphenyl (1.522 A ; Pedersen, 1975) and decakis(dichloromethyl)biphenyl (1.534 Å; Biali et al., 1988).

The interplanar angle between the phenyl rings in the molecule is $85.2(8)^{\circ}$. This compares well with the corresponding angles in $2,2^{\prime}$-dibromobiphenyl ( $86.0^{\circ}$ ), decachlorobiphenyl (86.7 ${ }^{\circ}$ ) and decakis(dichloromethyl)biphenyl (84.4 $)$.

## Experimental

The title compound was synthesized according to a previously reported method (Shibata et al., 2003).

## Crystal data

| $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Br}_{2}$ | Mo K $\alpha$ radiation |
| :--- | :--- |
| $M_{r}=424.22$ | Cell parameters from 2260 |
| Orthorhombic, $\AA$ Pbcn | reflections |
| $a=13.530(4) \AA$ | $\theta=2.4-24.0^{\circ}$ |
| $b=10.987(4) \AA$ | $\mu=4.59 \mathrm{~mm}^{-1}$ |
| $c=11.916(3) \AA$ | $T=174.2 \mathrm{~K}$ |
| $V=1771.4(9) \AA^{3}$ | Block, colorless |
| $Z=4$ | $0.29 \times 0.21 \times 0.13 \mathrm{~mm}$ |
| $D_{x}=1.591 \mathrm{Mg} \mathrm{m}^{-3}$ |  |

Received 9 July 2004
Accepted 13 July 2004
Online 7 August 2004

## organic papers

## Data collection

Bruker SMART 1000
diffractometer
$\omega$ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.280, T_{\text {max }}=0.554$
7776 measured reflections

## Refinement

Refinement on $F \quad \mathrm{H}$-atom parameters constrained
$R=0.038$
$w R=0.050$
$w R=0.050$
1061 reflections
101 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00022\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.28$ e $\AA^{-3}$
1483 independent reflections
1061 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=24.7^{\circ}$
$h=-13 \rightarrow 15$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| $\mathrm{Br} 1-\mathrm{C} 2$ | $1.871(4)$ | $\mathrm{C} 1-\mathrm{C1}^{\mathrm{i}}$ | $1.502(9)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Br} 2-\mathrm{C} 6$ | $1.809(5)$ |  |  |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C1}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ | $-83.7(8)$ | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C1}^{\mathrm{i}}-\mathrm{C}^{\mathrm{i}}$ |  |
| Symmetry code: (i) $1-x, y, \frac{3}{2}-z$. |  | $95.6(3)$ |  |

Table 2
Contact distances ( $\AA$ ).

| $\mathrm{Br} 1 \cdots \mathrm{Br} 2^{\mathrm{ii}}$ | $3.557(2)$ | $\mathrm{Br} 2 \cdots \mathrm{Br}^{\mathrm{iv}}$ | $3.532(4)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Br} 2 \cdots \mathrm{C} 11^{\mathrm{iii}}$ | 3.502 (2) |  |  |

Symmetry codes: (ii) $x,-y, z-\frac{1}{2}$; (iii) $x,-y, \frac{1}{2}+z$; (iv) $1-x,-y, 2-z$.
Atoms C 10 and C 11 were inserted along the $\mathrm{C}-\mathrm{Br}$ bonds at a fixed distance of $1.54 \AA$ from the ring $C$ atoms. The displacement parameters of these atoms were fixed at $0.0456 \AA^{2}$ because their positions are not well defined and the $\mathrm{C}-\mathrm{Br}$ distance is too short to allow for proper resolution of the disordered atoms. The Br 1 atom occupancy was allowed to refine and then fixed at 0.73 . The occupancies of atoms $\mathrm{Br} 2, \mathrm{C} 10$ and C 11 were tied appropriately to that of Br1.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine


Figure 1
The molecular structure of the title compound, including the disorder. Displacement ellipsoids are drawn at the $50 \%$ probability level.
structure: TEXSAN (Molecular Structure Corporation \& Rigaku, 1998); molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors acknowledge Dr Fred Hollander, Dr Allen Oliver and Professor Kenneth N. Raymond for their invaluable assistance. We also thank Karl Tupper for providing the sample.

## References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Biali, S. E., Kahr, B., Okamoto, Y., Aburatani, R. \& Mislow, K. (1988). J. Am. Chem. Soc. 110, 1917-1922.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SMART (Version 5.631) and SAINT (Version 6.40). Bruker AXS Inc., Madison, Wisconsin, USA.
MacNeil, D. D. \& Decken, A. (1999). Acta Cryst. C55, 628-630.
Molecular Structure Corporation \& Rigaku (1998). TEXSAN. Version 1.10. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Pedersen, B. F. (1975). Acta Cryst. B31, 2931-2933.
Shibata, T., Tsuruta, H., Danjo, H. \& Imamoto, T. (2003). J. Mol. Cat. A, 196, 117-124.

